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Abstract. This paper suggests dense and switched modular primitives for a
bond-graph-based GP design framework that automatically synthesizes designs
for multi-domain, lumped parameter dynamic systems. A set of primitives is
sought that will avoid redundant junctions and elements, based on pre-
assembling useful functional blocks of bond graph elements and (optionally)
using a switched choice mechanism for inclusion of some elements.  Motiva-
tion for using these primitives is to improve performance through greater
search efficiency and thereby to reduce computational effort. As a proof of
concept for this approach, an eigenvalue assignment problem, which is to find 
bond graph models exhibiting minimal distance errors from target sets of ei-
genvalues, was tested and showed improved performance for various sets of ei-
genvalues. 

1 Introduction 
Design of interdisciplinary (multi-domain) dynamic engineering systems, such as
mechatronic systems, differs from design of single-domain systems, such as elec-
tronic circuits, mechanisms, and fluid power systems, in part because of the need to 
integrate the several distinct domain characteristics in predicting system behavior 
(Youcef-Toumi [1]). However, most current research for evolutionary design has been 
optimized for a single domain (see, for example, Koza et. al., [2,3]).  

In order to overcome this limitation and enable open-ended search, the Bond 
Graph / Genetic Programming (BG/GP) design methodology has been developed, 
based on the combination of these two powerful tools (Seo et al. [4,5] and tested for a 
few applications – an analog filter (Fan et al. [6]), printer drive mechanism (Fan et. 
al., [7]), and air pump design (Goodman et al. [8]).  BG/GP worked efficiently for 
these applications. The search capability of this system has been improved dramati-
cally by introduction of a new form of parallel evolutionary computation, called Hier-
archical Fair Competition GP (HFC-GP, Hu, et al., [9]), which can strongly reduce 
premature convergence  and  enable scalability with smaller populations.  
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However, two issues still arise: one is the need for much stronger synthesis
capability arising from the complex nature of multi-domain engineering design,
and the other is the desire to minimize computational demands.  While we have 
made inroads in  improving of GP search by introducing HFC-GP, we want to
exploit the notion of modularity of GP function primitives to make additional gains.
Much useful modularity can be discovered during an evolutionary process, as is
done, for example, by the ADF (Koza [10]). However, in many cases, we believe
that explicit introduction of higher-level modules as function primitives, based on 
domain knowledge, will yield faster progress than requiring their recognition 
during the evolutionary process.  Some research has been devoted to choice or 
refinement of the function set in GP. Soule and Heckendorn [11] examined how the 
function set influences performance in GP and showed some relationship between 
performance and GP functions sets, but their work was limited to generating simple
sine functions varying only arithmetic and trigonometric operators (e.g., +, -, *, /,
tan, ….). We will try to exploit higher-level function sets, rather than simply
choosing different sets at the same level.

In this paper, a generic type of primitive is introduced, and specialized here to 
capture  specific domain knowledge about bond graphs – the dense switched modu-
lar primitive.

First, we introduce the dense module concept to generate compact bond graph 
models with fewer operations. It replaces several operations in the basic (original) 
set with one operation, yielding a smaller tree attainable with less computational 
effort.   

Second, the switched module concept creates a small function set of elements
with changeable forms, which can assist in evolving complex functionality, while 
eliminating many redundant bond graph structures evolved if it is not used. Ele-
ments eliminated include “dangling” junctions that connect to nothing and many 
one-port components (such as resistors, capacitors, inductors, etc.). Their elimina-
tion makes the resulting bond graph simpler and the speed of evolution faster. 

A careful design of a dense and switched modular primitive should considera-
bly increase the efficiency of search and also, for the bond graph case, the effi-
ciency of fitness assessment, as is illustrated in this paper.

As a test class of design problems, we have chosen one in which the objective 
is to realize a design having a specified set of eigenvalues. The eigenvalue assign-
ment problem is well defined and has been studied effectively using linear compo-
nents with constant parameters. Section 2 discusses the inter-domain nature, effi-
cient evaluation, and graphical generation of bond graphs, including the design 
methodology used in approaching such problems.  Section 3 explains the basic set
and redundancy problem and Sect. 4 describes the dense switched modular primi-
tive set. Section 5 presents results for 6-, 10- and 16-eigenvalue design problems,
and Sect. 6 concludes the paper. 
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2 Evolutionary Bond Graph Synthesis for Engineering Design

2.1   The BG/GP Design Methodology 

There is a strong need for a unified design tool, able to be applied across energy do-
mains – electrical, mechanical, hydraulic, etc. Most design tools or methodologies
require user interaction, so users must make many decisions during the design process.
This makes the design procedure more complex and often introduces the need for 
trial-and-error iterations.  Automation of this process – so the user sets up the specifi-
cations and “pushes a button,” then receives candidate design(s) – is also important.  

A design methodology that combines bond graphs and genetic programming can 
serve as an automated and unified approach (Fig. 1). The proposed BG/GP (Bond 
Graph with Genetic Programming) design methodology requires only an embryo 
model and fitness (performance) definition in its initial stage; the remaining proce-
dures are automatically executed by genetic programming search. However, due to
the complexity of the engineering design problem, the need for efficiency in the de-
sign search is very high.  It is this problem that is addressed here. 

Fig. 1.  Key features of the BG/GP design methodology 

2.2   Bond Graphs  

Topologically, bond graphs consist of elements and bonds.  Relatively simple systems 
include passive one-port elements C, I, and R, active one-port elements Se and Sf, and 
two-port elements TF and GY (transformers and gyrators).  These elements can be 
attached to 0- (or 1-) junctions, which are multi-port elements, using bonds.  The 
middle of Fig. 2 consists of Se, 1-junction, C, I, and R elements, and that same bond 
graph represents, for example, either a mechanical mass, spring and damper sys-
tem(left), or an RLC electrical circuit.  Se corresponds with force in mechanical sys-
tems, or voltage in electrical (right). The 1-junction implies a common velocity for 1) 
the force source, 2) the end of the spring, 3) the end of the damper, and 4) the mass in
the mechanical system, or implies that the current in the RLC loop is common. The R,
I, and C represent the damper, inertia (of a mass), and spring in the mechanical sys-
tem, or the resistor, inductor, and capacitor in the electrical circuit.

Automated 
Design 

Unified 
Design 

• Electric 
• Mechanical
• Hydraulic

• Embryo 
• Fitness Definition 

BG/GP design
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Fig. 2.  The same bond graph model for two different domains

3 Basic Set and Redundancy 

The initial BG/GP system used GP functions and terminals for bond graph 
construction as follows. There are four types of functions: add functions that can be 
applied only to a junction and which add a C, I, or R element; insert functions that
can be applied to a bond and which insert a 0-junction or 1-junction into the bond;
replace functions that can be applied to a node and which can change the type of 
element and corresponding parameter values for C, I, or R elements; and arithmetic
functions that perform arithmetic operations and can be used to determine the 
numerical values associated with components (Table 1). Details of function defini-
tions are illustrated in Seo et al. [5]. 

Table 1.  Functions and terminals in Basic set 

Name Description
 add_C
 add_I
 add_R
 insert_J0 
 insert_J1 
 replace_C 
 replace_ I 
 replace_ R 
 + 
 - 
 endn 
 endb 
 endr
 erc

 Add a C element to a junction
 Add an I element to a junction
 Add an R element to a junction
 Insert a 0-junction in a bond 
 Insert a 1-junction in a bond 
 Replace current element with C element
 Replace current element with I element
 Replace current element with R element
 Sum two ERCs 
 Subtract two ERCs
 End terminal for add element operation 
 End terminal for insert junction operation 
 End terminal for replace element operation
 Ephemeral random constant (ERC)

Many redundant or unnecessary junctions and elements were observed in experiments
with this basic set.  Such unnecessary elements can be generated by the free combina-
torial connection of elements, and, while they can be removed without any change in
the physical meaning of the bond graph, their processing reduces the efficiency of 
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processing and of search.  At the same time, such a “universal” set guarantees that all 
possible topologies can be generated.  However, many junctions “dangle” without
further extension and many arrangements of one-port components (C, I, R) that can 
be condensed are generated. Figure 3 illustrates redundancies that are marked with 
dotted circles in the example. First, the dangling 0- and 1-junctions in the left-hand 
figure can be eliminated, and then three C, I, and R elements can be joined together at 
one 1-junction. Furthermore, two R elements attached to neighboring 0-junctions can 
be merged to a single equivalent R. Avoiding these redundant junctions and elements
improves search efficiency significantly.  

Fig. 3.  Example of redundant 0- and 1-junctions and R elements (left) in generated bond graph 
model, and equivalent model after simplification (right). The dotted lines represent the boun-
dary of the embryo 

4 Construction of Dense Switched Modular Primitives

The redundancy problem is closely related with the performance and computational
effort in the evolutionary process. The search process will be hastened by eliminating
the redundancy, and it is hypothesized that this will happen without loss of 
performance of the systems evolved. It is obvious that computational resources can be 
saved by removal of the redundancy. To reduce the redundancy noted above and to
utilize the concept of modularity, a new type of GP function primitives has been 
devised – the dense switched modular primitives (“DSMP”). Roughly speaking, a
dense representation (eliminating redundant components at junctions, guaranteeing 
causally well-posed bond graphs, and avoiding adjacent junctions of the same type) 
will be combined with a switched structure (allowing components that do not impact
causal assignment at a junction to be present or absent depending on a binary switch).   

Fig. 4.  The dense modular primitive
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The major features of the modular primitives are as follows. First, a single dense 
function replaces all add, insert, and replace functions of the basic set. This concept is
explained in Fig. 4, in which mixed ins and add operations can be merged into one 
operation. Therefore, a GP tree that represents a certain bond graph topology can be 
much smaller than attainable with the basic set.  This dense function not only incor-
porates multiple operations, but also reflects design knowledge of the bond graph 
domain, such as causality (discussed later).  

Second, any combination of C, I, and R components can be instantiated according 
to the values of a set of on/off switch settings that are evolved by mutation.  This
modularity also helps to relieve the redundancy of C, I, and R components, giving 
them fewer places to proliferate that appear to be different, but are functionally 
equivalent. This new set introduces further modularity through a controllable switch-
ing function for selection of C, I, R combinations (Fig. 5). The function set of the 
dense switched modular primitives is shown in Table 2. It consists of two functions
that replace all ins, add, and replace functions in the basic set (Table 1). 

Table 2.  New functions in the switched modular primitive set 

Name Description
insert_JPair_SWElements  

add_J_ SWElements

Insert a 0-1 (or 1-0) junction pair in a bond and 
    attach switched C, I, R elements to each junction

Add a counter-junction to a junction and  
    attach  switched C, I, R elements

Fig. 5. Switched modular primitive

Third, the proper typing of 0-junctions and 1-junctions is determined by an im-
plicit genotype-phenotype mapping, considering the neighbor junction to which the 
primitive is attached.  This allows insertion of only “proper pairs” of junctions on
bonds, preventing generation of consecutive junctions of the same type that are re-
placeable by a single one.   

C

I 

R 

on/off  
switches 

0, 1 
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Fourth, we insure that we generate only feasible individuals, satisfying the caus-
ally well-posed property, so automatic state equation formulation is simplified con-
siderably. One of the key advantages of BG/GP design is the efficiency of the evalua-
tion. The evaluation stage is composed of two steps: 1) causality analysis, and, when
merited, 2) dynamic simulation. The first, causal analysis, allows rapid determination 
of feasibility of candidate designs, thereby sharply reducing the time needed for
analysis of designs that are infeasible. In most cases, all bonds in the graph will have 
been assigned a causal stroke (determining which variables are assigned values at that 
point, rather than bringing to it pre-assigned values) using only integral causality of C 
or I and extension of causal implication. Some models can have all causality assigned
without violation – the causally satisfied case. Other models are assigned causality, 
but with violations – the causally violated case. If one has to continue to use an 
arbitrary causality of an R, it means that some algebraic relationships must be solved
if the equations are to be put into standard form. This case can be classified as
causally undetermined. Detail causality analysis is described in Karnopp et al. [12]. 

The dense switched modular primitives with implicit genotype-phenotype map-
ping and the guaranteed feasibility of the resulting causally well-posed bond graphs
can speed up the evolution process significantly. 

5     Experiments and Analysis 

To evaluate and compare the proposed approach with the previous one, the eigen-
value assignment problem, for which the design objective is to find bond graph mod-
els with minimal distance errors from a target set of eigenvalues, is used.  The prob-
lem of eigenvalue assignment has received a great deal of attention in control system 
design. Design of systems to avoid instability and to provide specified response char-
acteristics as determined by their eigenvalues is often an important and practical prob-
lem.

5.1    Problem Definition

In the example that follows, a set of target eigenvalues is given and a bond graph 
model with those eigenvalues must be generated, in a classic “inverse” problem.  The 
following sets (consisting of various 6-, 10- and 16-eigenvalue target sets, respec-
tively) were used for the genetic programming runs:

• Eigenvalue sets used in experiments:
1) {-1±2j, -2±j, -3±0.5j}
2) {-10±j, -1±10j, -3±3j }
3) {-20±j, -1±20j, -7±7j}
4) {-1, -2, -3, -4, -5, -6} 
5) {-20±j, -1±20j, -7±7j, -12±4j, -4±12j }
6) {-1, -2, -3, -4, -5, -6, -7, -8, -9, -10}
7) {-20±1j, -1±20j, -7±7j, -12±4j, -4±12j, -15±2j, -9±5j, -5±9j}
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The fitness function is defined as follows:  pair each target eigenvalue one:one 
with the closest one in the solution; calculate the sum of distance errors between each 
target eigenvalue and the solution’s corresponding eigenvalue, divide by the order, 
and perform hyperbolic scaling as follows. Relative distance error (normed by the 
distance of the target from the origin) is used.  

)/2(
15.0)(

OrderError
EigenvalueFitness ∑++=

We used a strongly-typed version (Luke, [13]) of lilgp (Zongker and Punch [14]) with 
HFC (Hierarchical Fair Competition, Hu, et al., [9]) GP to generate bond graph mod-
els. These examples were run on a single Pentium IV 2.8GHz PC with 512MB RAM. 
The GP parameters were as shown below.

Number of generations : 500  
Population sizes : 100 in each of ten subpopulations for multiple population runs
Initial population: half_and_half 

     Initial depth : 3-6
Max depth : 12 (with 800 max_nodes)
Selection : Tournament (size=7) 
Crossover : 0.9 
Mutation : 0.1 

The tabular results of 6- and 10-eigenvalue runs are provided in Tables 3-4, with
statistics including mean relative distance error (averaged across each target eigen-
value) and mean tree size, for each set of 10 experiments.

Table 3 illustrates the comparison between the basic set and the DSMP (dense 
switched modular primitive) set on typical complex conjugate and real six-eigenvalue 
target sets. In the first set, {-1±2j, -2±j, -3±0.5j}, the average error of the basic set 
(0.151) is larger than that of the DSMP set (0.043). The second and third sets, for two 
different target eigenvalue sets that have larger norms from the origin, show average 
distance errors of the basic set that are also larger. The numbers in parentheses re-
garding distance error of the DSMP set represent their ratio to the basic set distance 
errors. 

Table 3.  Results for 6 eigenvalues

6-Eigenvalue Placement Problem  (10 runs) 

Basic set DSMP set  

Eigenvalue set  Dist error Tree Size    Dist error  Tree Size 
{-1±2j, -2±j, -3±0.5j}    0.151        513.6   0.043(28%)        237.0 

{-10±1j, -1±10j, -3±3j} 0.068 451.8 0.026(38%) 296.8 
{-20±1j, -1±20j, -7±7j} 0.056 399.4 0.021(37%) 285.6 
 {-1, -2, -3, -4, -5, -6} 0.144 445.7  0.009(6%) 307.1 
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In a fourth example, an all-real set of target eigenvalues {-1, -2, -3, -4, -5, -6} is
tested and shows that the ratio of errors between the approaches is more than ten
(0.144 for the basic set vs. 0.009 for the DSMP set, only 6% of the basic set error). 
Also, mean tree sizes of all basic set runs are much larger than those of DSMP set. 

Results for a 10-eigenvalue assignment problem are shown in Table 4. The results
for a complex conjugate 10-eigenvalue set {-20±1j, -1±20j, -7±7j, -12±4j, -4±12j} 
show that the average error of the basic set (0.210) is three times larger than that of 
the DSMP set (0.064). The results for a real 10-eigenvalue set also show the average 
error of the basic set (0.267) is more than ten times larger than that of the DSMP set
(0.023). As with 6 eigenvalues, the mean tree sizes of the basic set are larger than 
those of the DSMP set.

Table 4.   Results for 10 eigenvalues

10-Eigenvalue Placement Problem  (10 runs) 

Basic set DSMP set  

Eigenvalue set Dist error  Tree size   Dist error  Tree size   
{-20±1j, -1±20j, -7±7j, -12±4j, -4±12j} 0.210 564.9 0.064 (30%) 385.6 

{-1, -2, -3, -4, -5, -6, -7, -8, -9, -10} 0.267 564.5 0.023 (9%) 425.8 

Results for a 16-eigenvalue assignment problem – a much more difficult prob-
lem – are shown in Table 5. The results for a complex conjugate 16-eigenvalue set
{-20±1j, -1±20j, -7±7j, -12±4j, -4±12j, -15±2j, -9±5j, -5±9j} show that the average error of 
the basic set (0.279) is twice as large as that of the DSMP set (0.132).  Mean size of 
the GP tree, BG size, and computation time are also given in Table 5. BG size repre-
sents the mean number of junctions and C, I, R elements in each individual. All mean 
tree sizes, BG sizes, and computation times of the DSMP set are less, respectively, 
than their basic set counterparts

Table 5.   Results for 16 eigenvalues

16-Eigenvalue Placement Problem  (10 runs) 
{-20±1j, -1±20j, -7±7j, -12±4j, -4±12j, -15±2j, -9±5j, -5±9j}

Basic set DSMP set  

 Dist  
error

 Mean
 Tree  
Size

 BG Size 
Compu. 

Time
  (min) 

Dist error 
 Mean
 Tree  
Size 

 BG Size 
Compu. 

Time
(min) 

0.279 663.1 62.2 72.4 0.132 (47%) 592.6 37 56.1 
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Although the experiments run to date are not sufficient to allow making strong 
statistical assertions, it appears that the search capability of the DSMP set is superior
to that of the basic set for bond graph design. The superiority of the DSMP set seems
very clear. Although the difference may be not seem large, it is very significant con-
sidering that the results of the basic set runs are already taking advantage of HFC
(Hierarchical Fair Competition, Hu, et al., [9]).    

Fig. 6.  Distance error for 16 eigenvalues 

Fig. 7.  Mean tree size for 16 eigenvalues 

The distance errors (vs. generation) in 10 runs of the 16-eigenvalue problem are 
shown in Fig. 6. The distance errors of the DSMP set in Fig. 6 have already decreased 
rapidly within 50 generations, because only causally feasible (well-posed) individuals
appear in the population.  Figure 7 gives the mean tree sizes for each approach on the 

Basic DSMP

Basic DSMP
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16-eigenvalue problem.  The DSMP set clearly obtains better performance using 
smaller trees.  This bodes well for the scalability of the approach. 

6    Conclusion 

This paper has introduced the dense switched modular primitive for bond graph/GP-
based automated design of multi-domain, lumped parameter dynamic systems. A
careful combination is made of a dense representation (eliminating redundant compo-
nents at junctions, guaranteeing causally well-posed bond graphs, and avoiding adja-
cent junctions of the same type) and a switched structure (allowing components that
do not impact causal assignment at a junction to be present or absent depending on a 
binary switch).  The use of these primitives considerably increases the efficiency of 
fitness assessment and the search performance in generation of bond graph models, to
solve engineering problems with less computational effort. 

As a proof of concept for this approach, the eigenvalue assignment problem, 
which is to synthesize bond graph models with minimum distance errors from pre-
specified target sets of eigenvalues, was used. Results showed better performance for 
various eigenvalue sets when the new primitives were used.  This tends to support the 
conjecture that a carefully tailored, problem-specific representation and operators that
generate only feasible solutions with smaller amounts of redundancy and fewer geno-
types that map to the same effective phenotype will improve the efficiency of GP 
search. This, in turn, offers promise that much more complex multi-domain systems 
with more detailed performance specifications can be designed efficiently. Further 
study will aim at extension and refinement of the GP representations for the bond-
graph/genetic programming design methodology, and at demonstration of its
applicability to design of more complex systems.
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